

Data-driven and distributed optimization for addressing complexity in contemporary applications

Maria Prandini

SEDDIT Annual Workshop Linköping University, 20 November 2024

Net zero by 2050

- Global greenhouse gas emissions have to be reduced by 45% by 2030 to reach net zero by 2050
- The energy sector is the source of around three-quarters of greenhouse gas emissions.
- Polluting fossil-fueled power needs to be replaced with renewable energy.

Net zero by 2050

Renewables share of power generation in the Net Zero Scenario, 2010-2030

From the International Energy Agency report on renewable electricity – Sept 2022

From the International Energy Agency report on renewable electricity – Sept 2022

Integration of solar and wind power in the grid

Widespread increase in distributed energy production from solar and wind generators:

- Reduction of global greenhouse gas emissions
- Energy production close to where it is consumed

Integration of solar and wind power in the grid

Widespread increase in distributed energy production from solar and wind generators:

- Reduction of global greenhouse gas emissions
	- Energy production close to where it is consumed
- Risk of destabilization of the grid due to their non-dispatchable and only partly predictable nature

Transition to sustainable energy production

Challenge:

manage the day-to-day differences between supply and demand

Main directions:

- replace coal by other sources like methane that are less polluting but still capable of guaranteeing a plannable power supply in the transitionary phase
- add flexibility via:
	- energy storage systems
	- demand response

Demand response and end-users involvement

Demand response is the voluntary change of electricity use by end-users.

• implicit demand response

price signals and tariffs are used to incentivize consumers to shift consumption

Charging of a fleet of electric vehicles

Goal of the fleet aggregator: decide the schedule for each vehicle so as to minimize the charging cost of the whole fleet while satisfying local and global constraints

Each vehicle:

- Final SoC + Battery capacity constraints
- V2G: charge/discharge at some bounded rate

Distribution network:

- Maximum power exchange limit
- Costs for charging/discharging

Demand response is the voluntary change of electricity use by end-users.

• implicit demand response

price signals and tariffs are used to incentivize consumers to shift consumption

• explicit demand response

flexibility is monetized through direct payments to consumers who shift demand upon request

The Energy Efficiency Directive (2012/27/EU) requires to allow DR participation in the energy market for providing balancing services

Manual Frequency Restoration Reserve via End-users Aggregation

Balancing Services Providers (BSPs) aggregate end-users and offer manual frequency restoration reserves (mFRR) to the grid operator

In the European Network of Transmission System Operators for Electricity area, there are four main balancing products:

Manual Frequency Restoration Reserve via End-users Aggregation

- The grid operator sends a balancing energy request to the BSP
- 2. The BSP receives the request and optimizes its distribution over the aggregated units asking them to reduce or increase their energy consumption
- 3. The designated units modulate their consumption/generation level
- 4. The energy modulation is made available to the grid operator

Manual Frequency Restoration Reserve via End-users Aggregation

- The grid operator sends a balancing energy request to the BSP
- 2. The BSP receives the request and optimizes its distribution over the aggregated units asking them to reduce or increase their energy consumption
- 3. The designated units modulate their consumption/generation level
- 4. The energy modulation is made available to the grid operator

Addressed problem

Mixed Logical Dynamical system

Modelling framework

Mixed Logical Dynamical system

Modelling framework

$$
s(t + 1) = A_t s(t) + B_{1t} u(t) + B_{2t} \eta(t) + B_{3t} z(t)
$$

$$
E_{2t} \eta(t) + E_{3t} z(t) \le E_{1t} u(t) + E_{4t} s(t) + E_{5t}
$$

$$
s = \begin{bmatrix} s_c \\ s_l \end{bmatrix}, \qquad s_c \in \mathbb{R}^{n_c}, \ \ s_l \in \{0, 1\}^{n_l} \qquad \text{State}
$$

$$
u = \begin{bmatrix} u_c \\ u_l \end{bmatrix}, \qquad u_c \in \mathbb{R}^{n_c}, \ \ u_l \in \{0, 1\}^{n_l} \qquad \text{Input}
$$

 $\eta \in \{0,1\}^{r_l}$ **Auxiliary Variables**

Bemporad Alberto e Morari Manfred, **"Control of systems integrating logic, dynamics, and constraints,"***Automatica 35 (1999): 407-427.*

Optimization framework

Optimization framework

Optimization framework

Efficient decentralized resolution schemes

Data-based approach to deal with uncertainty

Mixed Logical Dynamical system

Mixed-Integer Linear Program

 $\min \ c^{\perp}x$ \mathcal{X} s.t $Ax \leq b$ $x \in \mathbb{R}^{n_c} \times \mathbb{Z}^{n_d}$

Mixed Logical Dynamical system

Mixed-Integer Linear Program

Mixed Logical Dynamical system

Constraint-coupled multi-agent MILP

Mixed Logical Dynamical system

Constraint-coupled multi-agent MILP

Mixed Logical Dynamical system

Constraint-coupled multi-agent MILP

Singly-Bordered block-diagonal matrix

Constraint-coupled multi-agent MILP

variables

variables

variables

variables

variables

 (v_{10}) $[v_3]$ \imath \overline{v}_9 $\boldsymbol{\eta}$

POLITECNICO MILANO 1863

 11111

POLITECNICO MILANO 1863

 11111

Markov chain representation of the constraint matrix

Clustering based on similarity of the resulting **trajectories**

Retrieval of the associated **permuted matrix**

Singly-Bordered block-diagonal matrix

Singly-Bordered block-diagonal matrix

Doubly-Bordered block-diagonal matrix

 11111

Modular architecture design in Systems Engineering

Image from INCOSE Systems Engineering Handbook, 2015

Beatrice Melani, et al. **"Logical Architecture Optimization via a Markov chain based Hierarchical Clustering Method."** 34th Annual INCOSE International Symposium, Dublin, Ireland, 2-6 July 2024*.*

Resolution schemes for multi-agent MILPs

Constraint-coupled multi-agent MILP

 \boldsymbol{m} $\min_{x_1,\ldots,x_m} \quad \sum_{i=1} c_i^\top x_i$ s.t. $D_i x_i \leq d_i \quad \forall i$ $m\,$ $\sum E_i x_i \leq f$ $i=1$ $x_i \in \mathbb{R}^{n_{c_i}} \times \mathbb{Z}^{n_{d_i}}$ $\forall i$

Primal problem

 $\mathcal{P}: \min_{x_1,\dots,x_m} \sum_{i=1}^m c_i^\top x_i + \lambda^\top \left(\sum_{i=1}^m E_i x_i - f \right)$
subject to:

 $x_i \in X_i$

Lagrange multipliers

Dual problem

$$
\mathcal{D}: \quad \max_{\lambda \geq 0} -\lambda^{\top} f + \sum_{i=1}^{m} \min_{x_i \in X_i} (c_i^{\top} + \lambda^{\top} E_i) x_i \longrightarrow \lambda^{\star}
$$

Convex problem providing a lower bound on the cost

Can be solved via **decentralized sub-gradient algorithm**

Dual problem

$$
\mathcal{D}: \quad \max_{\lambda \geq 0} -\lambda^{\top} f + \sum_{i=1}^{m} \min_{x_i \in X_i} (c_i^{\top} + \lambda^{\top} E_i) x_i
$$

Decentralized sub-gradient algorithm

$$
x_i(\lambda(k)) \in \arg\min_{x_i \in X_i} (c_i^\top + \lambda(k)^\top E_i)x_i \qquad i = 1, \dots, m
$$

$$
\lambda(k+1) = \left[\lambda(k) + \alpha(k) \left(\sum_{i=1}^m E_i x_i(\lambda(k)) - f\right)\right]_+
$$

Dual problem

$$
\mathcal{D}: \max_{\lambda \geq 0} -\lambda^{\top} f + \sum_{i=1}^{m} \min_{x_i \in X_i} (c_i^{\top} + \lambda^{\top} E_i) x_i
$$

Each **agent** solves a lower-dimensional problem and computes $x_i(\lambda_k)$

Dual problem

$$
\mathcal{D}: \quad \max_{\lambda \geq 0} -\lambda^{\top} f + \sum_{i=1}^{m} \min_{x_i \in X_i} (c_i^{\top} + \lambda^{\top} E_i) x_i \rightarrow \lambda^{\star}
$$

Each **agent** solves a lower-dimensional problem and computes $x_i(\lambda_k)$

A **central unit** updates λ_k based on $E_i x_i(\lambda_k)$ $\forall i$

Dual problem

$$
\mathcal{D}: \quad \max_{\lambda \geq 0} -\lambda^{\top} f + \sum_{i=1}^{m} \min_{x_i \in X_i} (c_i^{\top} + \lambda^{\top} E_i) x_i \longrightarrow \lambda^{\star} \longrightarrow x(\lambda^{\star})
$$

Recovered $x(\lambda^*)$ may not satisfy the coupling constraints

Sufficient condition

$$
\rho \ge v(x(\lambda_{\rho}^{\star})) \implies x(\lambda_{\rho}^{\star}) \quad \text{satisfies the coupling constraints}
$$

Sufficient implicit condition

$$
\rho \ge v(x(\lambda_{\rho}^{\star})) \implies x(\lambda_{\rho}^{\star}) \text{ satisfies the coupling constraints}
$$

function **depending** on the **solution** of an optimization **problem**

Vujanic et Al.

A-priori **worst-case** upper-bound $\tilde{\rho}$ based on **all the admissible solutions** of each agent.

$$
\rho = \tilde{\rho} \ge v(x(\lambda_{\rho}^{\star})) \quad \forall \rho
$$

Vujanic Robin, et al. **"A decomposition method for large scale MILPs, with performance guarantees and a power system application."** *Automatica 67 (2016): 144-156.*

Vujanic et Al.

A-priori **worst-case** upper-bound $\widetilde{\rho}$ based on **all the admissible solutions** of each agent.

$$
\tilde{\rho} = p \max_{i=1,\dots,m} \left\{ \max_{x_i \in X_i} E_i x_i - \min_{x_i \in X_i} E_i x_i \right\}
$$

depending on all admissible solutions

Vujanic Robin, et al. **"A decomposition method for large scale MILPs, with performance guarantees and a power system application."** *Automatica 67 (2016): 144-156.*

Falsone et Al.

Non-decreasing **adaptive** tightening ρ_k based only on the tentative **solutions explored** by the resolution scheme.

$$
\rho_{k+1} = \max_{t=0,\dots,k} v(x(\lambda_{\rho_t}^{\star}))
$$

Falsone Alessandro et Al., **"A decentralized approach to multi-agent MILPs: finite-time feasibility and performance guarantees."** *Automatica 103 (2019): 141-150.*

Falsone et Al.

Non-decreasing **adaptive** tightening ρ_k based only on the tentative **solutions explored** by the resolution scheme.

$$
\rho_{k+1} = p \max_{i=1,\dots,m} \left\{ \max_{t=0,\dots,k} E_i x_{i,t} - \min_{t=0,\dots,k} E_i x_{i,t} \right\}
$$

depending on **explored solutions**

Falsone Alessandro et al., **"A decentralized approach to multi-agent MILPs: finite-time feasibility and performance guarantees."** *Automatica 103 (2019): 141-150.*

Decentralized resolution schemes – Memoryless update

Both **conservative**, may be **inapplicable** or lead to **poor performance** (worsens as $\|\rho\|_{\infty}$ increases)

Memory-less update

Adaptive tightening ρ_k derived based on the **current** tentative **solution** obtained by the resolution scheme.

$$
\rho_{k+1} = v(x(\lambda_{\rho_k}^{\star}))
$$

Manieri Lucrezia et Al., **"A novel decentralized approach to large-scale multi-agent MILPs."** *IFAC-PapersOnLine 56 (2023): 5*919-5924.
Vujanic et Al.

$$
\rho=\tilde{\rho}
$$

C

o

n

s

e

r

v

a

t

i

v

i

t

y

Falsone et Al.

 $\rho_{k+1} = \max_{t=0,...,k} v(x(\lambda_{\rho_t}^{\star}))$

A priori bound based on **all** feasible **solutions**

Adaptive bound based on all **explored solutions**

Memory-less update

$$
\rho_{k+1} = v(x(\lambda_{\rho_k}))
$$

Adaptive bound based on **current solution** only

Memory-less update

Less conservative

Manieri Lucrezia et Al., **"A novel decentralized approach to large-scale multi-agent MILPs."** *IFAC-PapersOnLine 56 (2023): 5*919-5924.

Memory-less update

Less conservative

Integral update

Manieri Lucrezia et Al., **"Handling complexity in large-scale cyber-physical systems through distributed computation"** chapter in *Computation-Aware Algorithmic Design for Cyber-Physical Systems, Springer (2022)*

 $\rho \qquad \mathcal{D}_{\rho} \rightarrow \lambda_{\rho}^{\star} \rightarrow x(\lambda_{\rho}^{\star})$

 ρ $\mathcal{D}_{\rho} \rightarrow \lambda_{\rho}^{\star} \rightarrow x(\lambda_{\rho}^{\star})$
 $v_{\rho} = \sum_{i=1}^{m} E_{i}x_{i}(\lambda_{\rho}^{\star}) - f$ v_ρ

 $\mathcal{D}_{\rho} \rightarrow \lambda_{\rho}^{\star} \rightarrow x(\lambda_{\rho}^{\star})$
 $v_{\rho} = \sum_{i=1}^{m} E_{i}x_{i}(\lambda_{\rho}^{\star}) - f$ v_ρ ρ

As long as $x(\lambda^\star_\rho)$ is **unfeasible**, $v_\rho\geq 0\,$ and ρ **increases**

As long as $x(\lambda^\star_\rho)$ is **unfeasible**, $v_\rho\geq 0\,$ and ρ **increases**

 \mathcal{D}_{ρ} enforces coupling constraints $\rightarrow v_{\rho}$ is **small**

$$
v_{\rho} = \sum_{i=1}^{\tilde{\rho}} E_i x_i (\lambda_{\rho}^{\star}) - f
$$

As long as $x(\lambda^\star_\rho)$ is **unfeasible**, $v_\rho\geq 0\,$ and ρ **increases**

 \mathcal{D}_{ρ} enforces coupling constraints $\rightarrow v_{\rho}$ is **small**

Saturation of ρ to $\widetilde{\rho}$

Memory-less update

Integral update

Manieri Lucrezia et Al., **"A novel decentralized approach to large-scale multi-agent MILPs."** *IFAC-PapersOnLine 56 (2023): 5*919-5924.

Manieri Lucrezia et Al., **"Handling complexity in large-scale cyber-physical systems through distributed computation"** chapter in *Computation-Aware Algorithmic Design for Cyber-Physical Systems, Springer (2022)*

Decentralized resolution schemes – Scalar coupling

No tightening needed *Dual Bisection Algorithm* **Finite-time convergence Bisection-based**

to a feasible solution

Manieri Lucrezia et Al., **" Dualbi: A dual bisection algorithm for non-convex problems with a scalar complicating constraint "** *Submitted to Automatica for possible publication and available on arXiv*

Decentralized resolution schemes – Scalar coupling

Manieri Lucrezia et Al., **" Dualbi: A dual bisection algorithm for non-convex problems with a scalar complicating constraint "** *Submitted to Automatica for possible publication and available on arXiv*

Dual problem solved via a bisection method to find a zero of the sub-differential

 $\mathcal{P}: \min_{x} f(x)$ s.t. $x \in X$ $\frac{1}{v(x)} \leq 0$

$$
\mathcal{D} : \max_{\lambda \ge 0} \min_{x \in X} f(x) + \lambda v(x)
$$

$$
\varphi(\lambda)
$$

$$
x(\lambda) = \arg \min_{x \in X} f(x) + \lambda v(x)
$$

 $\mathcal{P}: \min f(x)$ x

s.t. $x \in X$ \boldsymbol{x} $v(x) \leq 0$

$$
\mathcal{D} : \max_{\lambda \ge 0} \min_{x \in X} f(x) + \lambda v(x)
$$

$$
\varphi(\lambda)
$$

$$
x(\lambda) = \arg \min_{x \in X} f(x) + \lambda v(x)
$$

Application to the provision of balancing services to the power grid

Prosumer

- Controllable generator $G : P_i^G > 0$
- **•** Programmable load $L : P_i^L < 0$ Assumed to work on n_i^L levels
- **Battery Storage Device B** : $P_i^B \le 0$
- **•** Reference daily profile \tilde{P}_i

Pool

- m prosumers
- **•** Power exchanged with the grid $P = \sum_{i=1}^{m} (P_i^G + P_i^B + P_i^L)$

BSP

One-day time horizon \rightarrow *M* slots of duration τ_s

■ $(t\tau_s, (t+1)\tau_s)$, $t \in \{0, ..., M-1\}$

TSO

Variation of the power profile: $\Gamma(t)(1 \pm \varepsilon)$ $\varepsilon \in (0,1)$ In the time-interval $t_0, ..., t_f$

Minimise Operational Costs

BSP

 $\Gamma(t)(1-\varepsilon) \le P(t) - \tilde{P}(t) \le \Gamma(t)(1+\varepsilon) \qquad \forall t \in [t_0, t_f]$ $P_i(t) = \widetilde{P}_i$ $\forall t \in [t_f + 1, M - 1]$ Re-distributes the request among all prosumers **Satisfy operating constraints**

MLD model

Variables (of the *ith* prosumer)

Assumption:

$$
n_i^L = 2^{J_i^L} - 1, \quad J_i^L \in \mathbb{N}
$$

\n
$$
\delta_{i,j}^L(t) \in \{0,1\} \qquad j = 1, ..., J_i^L
$$

\n
$$
P_i^L = \sum_{j=1}^{J_i^L} \left(2_i^{j-1} \bar{P}_i^L \cdot \delta_{i,j}^L(t) \right) = \sigma^{\top} \cdot \delta_i^L(t)
$$

\n
$$
\delta_i^L(t) = \begin{bmatrix} \delta_{i,1}^L \\ \vdots \\ \delta_{i,J_i^L}^L \end{bmatrix}
$$

MLD model

Variables (of the *ith* prosumer)

 \bigodot

 $P_i^G>0$

 $\delta_i^G \in \{0,1\}$

 $P_i^B \lessgtr 0$ $- + b$

 $S_i(t)$

日和 $\delta_i^L(t) \in \{0,1\}^{J_i^L}$

State Vector

$$
s(t) = \begin{bmatrix} S_1(t) \\ \vdots \\ S_m(t) \end{bmatrix}
$$

Input Vector

$$
u(t) = \begin{bmatrix} u_1(t) \\ \vdots \\ u_m(t) \end{bmatrix}_{u_i(t)} = \begin{bmatrix} u_{i,c}(t) \\ u_{i,d}(t) \end{bmatrix} = \begin{bmatrix} P_i^G(t) \\ P_i^B(t) \\ \delta_i^G(t) \\ \delta_i^L(t) \end{bmatrix}
$$

POLITECNICO MILANO 1863⁹⁵

MLD model

Operating Constraints (of the *ith* prosumer)

Battery Storage Dynamics $S_i(t+1) = S_i(0) - \tau_s \sum_{s=0} P_i^B(s)$ $S_i(t) - \tau_s P_i^B(t)$

Energy Consumed by L

$$
\sum_{t=t_0}^{M-1} \tau_s P_i^L(t) = \sum_{t=t_0}^{M-1} \tau_s \sigma^\top \delta_i^L(t) = E_i^L
$$

Min/Max Capacity Level $S_i \leq S_i(t) \leq \overline{S}_i$ Min/Max Power Produced by G $\delta_i^G(t)P_i^G \leq P_i^G(t) \leq \delta_i^G(t)\overline{P}_i^G$

Charging/Discharging rates $P_i^{B,c} \leq P_i^{B}(t) \leq P_i^{B,d}$

POLITECNICO MILANO 1863⁹⁶

96

MLD model

Rescheduling Problem Constraints

Flexibility Limitation of L

$$
P_i^L(t) = \sigma^\top \delta_i^L(t) = \widetilde{P}_i^L(t)
$$

$$
t < t_i^{L,0} \lor t > t_i^{L,f}
$$

Rebound Effect Avoidance

$$
P_i(t) = P_i^G(t) + \sigma^{\top} \delta_i^L(t) + P_i^B(t) = \widetilde{P}_i(t).
$$

$$
t = t_f + 1, \dots, M - 1
$$

Power Variation (TSO request)

$$
(1 - \varepsilon)\Gamma(t) \leq \sum_{i=1}^{m} \left(P_i^G(t) + \sigma^{\top} \delta_i^L(t) + P_i^B(t) \right) - \widetilde{P}(t) \leq (1 + \varepsilon)\Gamma(t),
$$

$$
t = t_0, \dots, t_f
$$

MILP formulation

Operational Costs

 $C_i^L > 0$: Unitary cost for changes in the programmable load consumption profile

MILP formulation

Operational Costs

$$
J(\cdot) = \sum_{i=1}^{m} \sum_{t=t_0}^{M-1} \left(C_i^G P_i^G(t) + C_i^B \left[P_i^B(t) - P_i^B(t-1) \right] + C_i^L \left[P_i^L(t) - \widetilde{P}_i^L(t) \right] \right)
$$

Re-formulation

 $h_i^B(t)$ $h_i^L(t)$ auxiliary variables subject to:

$$
h_i^B(t) = |P_i^B(t) - P_i^B(t - 1)|
$$

\n
$$
h_i^L(t) = |P_i^L(t) - \widetilde{P}_i^L(t)|
$$

\n
$$
\forall t = t_0, ..., M - 1
$$

\n**NON-LINEAR**

$$
J(\cdot) = \sum_{i=1}^{m} \sum_{t=t_0}^{M-1} \left(C_i^G P_i^G(t) + C_i^B h_i^B(t) + C_i^L h_i^L(t) \right)
$$

NON-LINEAR

MILP formulation

Re- Formulation

$$
J(\cdot) = \sum_{i=1}^{m} \sum_{t=t_0}^{M-1} \left(C_i^G P_i^G(t) + C_i^B h_i^B(t) + C_i^L h_i^L(t) \right)
$$

with
$$
h_i^B(t) = |P_i^B(t) - P_i^B(t-1)|
$$

$$
h_i^B(t) = |P_i^B(t) - \tilde{P}_i^B(t-1)|
$$

$$
-P_i^B(t) + P_i^B(t-1) \leq h_i^B(t)
$$

$$
-P_i^B(t) + P_i^B(t-1) \leq h_i^B(t)
$$

$$
\forall t = t_0, ..., M - 1
$$

$$
h_i^L(t) = |P_i^L(t) - \tilde{P}_i^L(t)|
$$

$$
-\sigma^{\top} \delta_i^L(t) + \tilde{P}_i^L(t) \leq h_i^L(t)
$$

MILP formulation

Decision Variables

 $x_i^{\top} = [u_i(t_0) \quad h_i^B(t_0) \quad h_i^L(t_0) \quad \cdots \quad u_i(M-1) \quad h_i^B(M-1) \quad h_i^L(M-1)]$

Cost Function

$$
J(\cdot) = \sum_{i=1}^{m} \sum_{t=t_0}^{M-1} \left(C_i^G P_i^G(t) + C_i^B h_i^B(t) + C_i^L h_i^L(t) \right)
$$

$$
\frac{\begin{bmatrix}P_i^G(t) & P_i^B(t) & \delta_i^G(t) & \delta_i^L(t) & h_i^B(t) & h_i^L(t)\end{bmatrix}}{c_i^u = \begin{bmatrix}C_i^G & 0 & 0 & 0_{1 \times J_i^L}\end{bmatrix}}
$$

$$
u_i(t) = \begin{bmatrix} P_i^G(t) \\ P_i^B(t) \\ \delta_i^G(t) \\ \delta_i^L(t) \end{bmatrix}
$$

101

MILP formulation

Decision Variables

 $x_i^{\top} = [u_i(t_0) \quad h_i^B(t_0) \quad h_i^L(t_0) \quad \cdots \quad u_i(M-1) \quad h_i^B(M-1) \quad h_i^L(M-1)]$

Cost Function

$$
J(\cdot) = \sum_{i=1}^{m} \sum_{t=t_0}^{M-1} \left(C_i^G P_i^G(t) + C_i^B h_i^B(t) + C_i^L h_i^L(t) \right)
$$

$$
c_i^{\top} = \begin{bmatrix} c_i^u & C_i^b & C_i^L & \cdots & c_i^u & C_i^b & C_i^L \end{bmatrix}
$$

$$
P_i^G(t) \quad P_i^B(t) \quad \delta_i^G(t) \quad \delta_i^L(t) \quad h_i^B(t) \quad h_i^L(t) \end{bmatrix}
$$

$$
C_i^u = \begin{bmatrix} C_i^G & 0 & 0 & 0_{1 \times J_i^L} \end{bmatrix}
$$

$$
C_i^B \quad C_i^L \quad C_i
$$

102

Mixed Integer Linear Program

$$
\begin{aligned}\n\min & & c^\top x \\
s.t & & Ax \leq b \\
& x \in \mathbb{R}^{n_c} \times \mathbb{Z}^{n_d}\n\end{aligned}
$$

Mixed Integer Linear Program

min $c^{\top}x$ x
 $s.t$ $Ax \leq b$ $x \in \mathbb{R}^{n_c} \times \mathbb{Z}^{n_d}$

Multi-agent constraint coupled MILP

Multi-agent constraint coupled MILP

 \boldsymbol{m}

 $x_i \in \mathbb{R}^{n_{c_i}} \times \mathbb{Z}^{n_{d_i}}$ $\forall i$

Comparison with **50 prosumers** over 100 different parameters sets

Quality measured based on a bound on the **distance from the optimal cost**

Comparison with **50 prosumers** over 100 different parameters sets

Both integral and memory-less resolution schemes achieve an **average gap** of **0.17%**

State of the art approaches could **not** compute a **feasible** solution

Both algorithms return **closeto-optimal** solutions as the **size** of the problem **increases**.

Using ad-hoc procedures allows to **recover** computational **tractability**

Uncertain multi-agent problem

Uncertain multi-agent problem

Uncertain multi-agent problem

Replacing δ with some **nominal value** $\bar{\delta}$ may lead to **infeasibility**

POLITECNICO MILANO 1863

Robust multi-agent problem

Enforce constraints for **all admissible values** of ∈ Δ leads to **overly conservative** approaches (and requires **knowledge of** Δ)

Data-driven multi-agent problem

Data-based formulation using **realizations of the uncertain parameter** to characterize Δ and underlying ℙ.

Data-driven multi-agent problem

How many data are needed for the solution to satisfy the constraints associated with not yet seen scenarios?

Existing a-priori probabilistic guarantees

[1] provides guarantees for an **optimal solution**

Finding an **optimal solution** is often **unviable**

Guarantees in **[2]** require a **shared data-set**

Agents may not be willing to **share sensitive info**

[1] Esfahani Peyman M. et al. **"Performance bounds for the scenario approach and an extension to a class of non-convex programs."** *IEEE Transactions on Automatic Control 60 (2014) 46–58.*

[2] Falsone Alessandro et al. **"Uncertain multi-agent MILPs: A data-driven decentralized solution with probabilistic feasibility guarantees."** *Proceedings of machine learning research (2020) 1000–1009.*

Data-based guarantees

With confidence $(1 - \beta)$,

 $\mathbb{P}\{\delta : \alpha \text{ data-driven feasible solution is } \text{infeasible for some } i\} \leq \varepsilon$ if

$$
N_i \geq \bar{N}_i\left(\frac{\varepsilon}{m}, \frac{\beta}{m}, k_i\right) \quad \text{for each agent } i = 1, \dots, m
$$

Manieri Lucrezia et Al., **" Probabilistic feasibility in data-driven multi-agent non-convex optimization "** *Annual Reviews in Control 56 (2023)*

POLITECNICO MILANO 1863

Data-based guarantees

With confidence $(1 - \beta)$,

 $\mathbb{P}\{\delta : \alpha \text{ data-driven feasible solution is } \text{infeasible for some } i\} \leq \varepsilon$ if

$$
N_i \geq \bar{N}_i\left(\frac{\varepsilon}{m}, \frac{\beta}{m}, k_i\right) \quad \text{for each agent } i = 1, \dots, m
$$

The **smaller** ε , the more samples \overline{N}_i are needed

Data-based guarantees

With confidence $(1 - \beta)$,

 $\mathbb{P}\{\delta : \alpha \text{ data-driven feasible solution is } \text{infeasible for some } i\} \leq \varepsilon$ if

$$
N_i \geq \bar{N}_i\left(\frac{\varepsilon}{m}, \frac{\beta}{m}, k_i\right) \quad \text{for each agent } i = 1, \dots, m
$$

The **smaller** ε , the more samples \overline{N}_i are needed

Confidence can be close to 1 since \overline{N}_i grows with the logarithm of β

Data-based guarantees

With confidence $(1 - \beta)$,

a data-driven feasible solution is **infeasible** for some $\ i \} \leq \varepsilon$ if

The **smaller** ε , the more samples \overline{N}_i are needed

Confidence can be close to 1 since \overline{N}_i grows with the logarithm of β

The bound grows with the complexity k_i of the local feasibility set

Existing a-priori guarantees

Proposed a-priori guarantees

[1] provides guarantees for an **optimal solution**

Guarantees hold for **suboptimal solutions**

Guarantees in **[2]** require a **shared data-set**

Guarantees are local and hold for **private data-sets**

POLITECNICO MILANO 1863

[6] Esfahani Peyman M. et al. **"Performance bounds for the scenario approach and an extension to a class of non-convex programs."** *IEEE Transactions on Automatic Control 60 (2014) 46–58.*

[7] Falsone Alessandro et al. **"Uncertain multi-agent MILPs: A data-driven decentralized solution with probabilistic feasibility guarantees."** *Proceedings of machine learning research (2020) 1000–1009.*

Decomposition strategy

Disclose the **hidden** multi-agent **structure**

Decompose the problem in **smaller sub-problems**

Decomposition strategy

Resolution schemes

Disclose the **hidden** multi-agent **structure**

Decentralized schemes for **constraint-coupled MILPs**

Decompose the problem in **smaller sub-problems**

Less conservative and with **finite-time convergence**

Decomposition strategy

Resolution schemes

Data-based guarantees

Disclose the **hidden** multi-agent **structure**

Decentralized schemes for **constraint-coupled MILPs**

Guarantees for **suboptimal solutions**

Decompose the problem in **smaller sub-problems**

Less conservative and with **finite-time convergence**

Preserve **privacy** of local **information**

POLITECNICO MILANO 1863

Useful references

- **"A Decomposition Method for Large Scale MILPs, with Performance Guarantees and a Power System Application".** Robin Vujanic, Peyman Mohajerin Esfahani, Paul J. Goulart, Sébastien Mariéthoz and Manfred Morari. *Automatica, 67 : 144–156, 2016*
- **"A Decentralized Approach to Multi-Agent MILPs: Finite-time Feasibility and Performance Guarantees".** Alessandro Falsone. and Maria Prandini. *Automatica, 103 : 141-150, 2019* **[2]**

- **"A novel decentralized approach to large-scale multi-agent MILPs".** Lucrezia Manieri, Alessandro Falsone. and Maria Prandini. *IFAC-PapersOnLine 56, 2023 : 5*919-5924 **[3]**
- - **"Handling complexity in large-scale cyber-physical systems through distributed computation".** Lucrezia Manieri, Alessandro Falsone. and Maria Prandini. *Computation-Aware Algorithmic Design for Cyber-Physical Systems, Springer, 2022* **[4]**

"Probabilistic feasibility in data-driven multi-agent non-convex optimization ". [5]

Lucrezia Manieri, Alessandro Falsone. and Maria Prandini . *Annual Reviews in Control 56, 2023*

"Performance bounds for the scenario approach and an extension to a class of non-convex programs". Peyman Mohajerin Esfahani, Tobias stutter and John Lygeros *IEEE Transactions on Automatic Control, 60 : 46-58, 2014* **[6]**

"Uncertain multi-agent MILPs: A data-driven decentralized solution with probabilistic feasibility guarantees". Alessandro Falsone, Federico Molinari and Maria Prandini. *Learning for Dynamics and Control, 2020 : 1000-1009* **[7]**

Credit

Lucrezia Manieri Alessandro Falsone Kostas Margellos

1111111111111111

POLITECNICO MILANO 1863

 1111

PRIN PNRR project P2022NB77E "A data-driven cooperative framework for the management of distributed energy and water resources"

Funded by the European Union

NextGenerationEU

Thank you for your attention!

Maria Prandini

Maria.prandini@polimi.it

ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA