
Maria Prandini

SEDDIT Annual Workshop 
Linköping University, 20 November 2024

Data-driven and distributed optimization for addressing 
complexity in contemporary applications



Net zero by 2050

• Global greenhouse gas emissions have 
to be reduced by 45% by 2030 to reach 
net zero by 2050

• The energy sector is the source of around 
three-quarters of greenhouse gas 
emissions.

• Polluting fossil-fueled power needs to be 
replaced with renewable energy.



Net zero by 2050

19,8 20,2 21,1 21,9 22,6 23,1 24,0 24,8 25,6 26,5
28,2 28,7

60,9

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2030

Renewables share of power generation
in the Net Zero Scenario, 2010-2030

From the International Energy Agency report on renewable electricity – Sept 2022



Net zero by 2050

Renewable power generation by technology 
in the Net Zero Scenario, 2010-2030 [TWh]

From the International Energy Agency report on renewable electricity – Sept 2022
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Integration of solar and wind power in the grid

Widespread increase in distributed energy 
production from solar and wind generators: 
• Reduction of global greenhouse gas 

emissions
• Energy production close to where it is 

consumed



Integration of solar and wind power in the grid

Widespread increase in distributed energy 
production from solar and wind generators: 
• Reduction of global greenhouse gas 

emissions
• Energy production close to where it is 

consumed
• Risk of destabilization of the grid due to 

their non-dispatchable and only partly 
predictable nature



Transition to sustainable energy production

Challenge: 
manage the day-to-day differences between supply and demand

Main directions:
• replace coal by other sources like methane that are less polluting but still 

capable of guaranteeing a plannable power supply in the transitionary phase
• add flexibility via:  

• energy storage systems
• demand response



Demand response and end-users involvement 

Demand response is the voluntary change of electricity use by end-users. 

• implicit demand response 
price signals and tariffs are used to incentivize consumers to shift 
consumption



Charging of a fleet of electric vehicles

Goal of the fleet aggregator: decide the schedule for each vehicle so as to minimize 
the charging cost of the whole fleet while satisfying local and global constraints

Each vehicle:
• Final SoC + Battery capacity constraints
• V2G: charge/discharge at some bounded rate 

Distribution network:
• Maximum power exchange limit
• Costs for charging/discharging 



Demand response and end-users involvement 

Demand response is the voluntary change of electricity use by end-users. 

• implicit demand response 
price signals and tariffs are used to incentivize consumers to shift 
consumption

• explicit demand response
flexibility is monetized through direct payments to consumers who shift 
demand upon request

The Energy Efficiency Directive (2012/27/EU) requires to allow DR participation 
in the energy market for providing balancing services 



Manual Frequency Restoration Reserve via End-users Aggregation 

Balancing Services Providers (BSPs) aggregate end-users and offer manual 
frequency restoration reserves (mFRR) to the grid operator



Balancing products in the ENTSO-E area

In the European Network of Transmission System Operators for Electricity area, 
there are four main balancing products: 



Manual Frequency Restoration Reserve via End-users Aggregation 

1. The grid operator sends a balancing energy request to the BSP

2. The BSP receives the request and optimizes its distribution over the 
aggregated units asking them to reduce or increase their energy 
consumption

3. The designated units modulate their consumption/generation level

4. The energy modulation is made available to the grid operator
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1. The grid operator sends a balancing energy request to the BSP

2. The BSP receives the request and optimizes its distribution over the 
aggregated units asking them to reduce or increase their energy 
consumption

3. The designated units modulate their consumption/generation level

4. The energy modulation is made available to the grid operator
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Optimally operating 
complex systems
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Addressed problem

Uncertainty

Size

Heterogeneity

Optimally operating 
complex systems
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Mixed Logical 
Dynamical system



Modelling framework

𝑠 𝑡 + 1  = 𝐴𝑡𝑠 𝑡 + 𝐵1𝑡𝑢 𝑡 + 𝐵2𝑡𝜂 𝑡 + 𝐵3𝑡𝑧 𝑡

𝐸2𝑡𝜂 𝑡 + 𝐸3𝑡𝑧 𝑡 ≤ 𝐸1𝑡𝑢 𝑡 + 𝐸4𝑡𝑠 𝑡 + 𝐸5𝑡

𝑠 =
𝑠𝑐

𝑠𝑙
,  𝑠𝑐 ∈ ℝ𝑛𝑐 ,  𝑠𝑙 ∈ 0,1 𝑛𝑙   State

𝑢 =
𝑢𝑐

𝑢𝑙
 ,  𝑢𝑐 ∈ ℝ𝑛𝑐 ,  𝑢𝑙 ∈ 0,1 𝑛𝑙  Input

𝜂 ∈ 0,1 𝑟𝑙  ,  z ∈ ℝ𝑟𝑐    Auxiliary Variables

Piece-wise 
Linear 

Dynamical 
Systems

Finite-
State 

Machines

Hybrid 
Systems

Bemporad Alberto e Morari Manfred, "Control of systems integrating logic, dynamics, and constraints,"Automatica 35 (1999): 407-427.

Mixed Logical 
Dynamical system



Mixed Integer 
Linear Program

Optimal operation of MLD

Difficult to handle

𝑠 𝑡 + 1  = 𝐴𝑡𝑠 𝑡 + 𝐵1𝑡𝑢 𝑡 + 𝐵2𝑡𝜂 𝑡 + 𝐵3𝑡𝑧 𝑡

𝐸2𝑡𝜂 𝑡 + 𝐸3𝑡𝑧 𝑡 ≤ 𝐸1𝑡𝑢 𝑡 + 𝐸4𝑡𝑠 𝑡 + 𝐸5𝑡

𝑠 =
𝑠𝑐

𝑠𝑙
,  𝑠𝑐 ∈ ℝ𝑛𝑐 ,  𝑠𝑙 ∈ 0,1 𝑛𝑙   State

𝑢 =
𝑢𝑐

𝑢𝑙
 ,  𝑢𝑐 ∈ ℝ𝑛𝑐 ,  𝑢𝑙 ∈ 0,1 𝑛𝑙  Input

𝜂 ∈ 0,1 𝑟𝑙  ,  z ∈ ℝ𝑟𝑐    Auxiliary Variables

Mixed Logical 
Dynamical system
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Efficient
decentralized 

resolution 
schemes

Data-based 
approach to 

deal with 
uncertainty
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Decomposition strategies

Mixed Logical 
Dynamical system

Mixed-Integer Linear 
Program



Decomposition strategies

Mixed Logical 
Dynamical system

Mixed-Integer Linear 
Program



Decomposition strategies

Mixed Logical 
Dynamical system

Constraint-coupled 
multi-agent MILP

Local Cost



Decomposition strategies

Mixed Logical 
Dynamical system

Local 
Constraints

Constraint-coupled 
multi-agent MILP



Decomposition strategies

Mixed Logical 
Dynamical system

Coupling 
Constraints

Constraint-coupled 
multi-agent MILP



Decomposition strategies

Singly-Bordered 
block-diagonal matrix

Constraint-coupled 
multi-agent MILP
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Decomposition strategies
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Decomposition strategies



Clustering based on similarity of the resulting trajectories

Decomposition strategies

Markov chain representation of the constraint matrix

Evolution of the probability distribution from each node

Retrieval of the associated permuted matrix



Decomposition strategies



Decomposition strategies



Decomposition strategies



Decomposition strategies

Singly-Bordered 
block-diagonal matrix



Decomposition strategies

Singly-Bordered 
block-diagonal matrix

Doubly-Bordered 
block-diagonal matrix



Decomposition strategies



Modular architecture design in Systems Engineering

Beatrice Melani, et al. "Logical Architecture Optimization via a Markov chain based Hierarchical 
Clustering Method.“ 34th Annual INCOSE International Symposium, Dublin, Ireland, 2-6 July 2024.

Image from INCOSE Systems Engineering Handbook, 2015 



Resolution schemes 
for multi-agent MILPs



Constraint-coupled multi-agent MILP



Decentralized resolution schemes

shared 
resource

agent

Lagrangian relaxation

Decentralized iterative resolution 
schemes resorting to
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Lagrangian relaxation

Decentralized iterative resolution 
schemes resorting to



Decentralized resolution schemes

Primal problem

Lagrange multipliers



Decentralized resolution schemes

Dual problem

Convex problem providing a lower bound on the cost 

Can be solved via decentralized sub-gradient algorithm



Decentralized resolution schemes

Dual problem

Decentralized sub-gradient algorithm



Decentralized resolution schemes

Dual problem

Each agent solves a lower-dimensional 
problem and computes 𝒙𝒊 𝝀𝒌

𝒙𝒊 𝝀𝒌



Decentralized resolution schemes

Dual problem

Each agent solves a lower-dimensional 
problem and computes 𝒙𝒊 𝝀𝒌

A central unit updates 𝝀𝒌 based on 𝐸𝑖𝑥𝑖 𝜆𝑘  ∀𝑖



Decentralized resolution schemes

Dual problem

Optimal 𝝀⋆ via distributed lower dimensional computations

Recovered 𝒙 𝝀⋆ may not satisfy the coupling constraints 



Decentralized resolution schemes

shared 
resource

agent

Lagrangian relaxation

Decentralized iterative resolution 
schemes resorting to



Decentralized resolution schemes

shared 
resource

Lagrangian relaxation

Decentralized iterative resolution 
schemes resorting to

Resource tightening

agent



Decentralized resolution schemes

Fictitious 
tightening

How to compute the tightening to enforce satisfaction 
of the coupling constraints?

shared 
resource

shared 
resource



Decentralized resolution schemes

Sufficient condition

satisfies the coupling constraints



Decentralized resolution schemes

Sufficient implicit condition

function depending
on the solution of an 
optimization problem

satisfies the coupling constraints



Decentralized resolution schemes

Vujanic Robin, et al. "A decomposition method for large scale MILPs, with performance guarantees and a power system application.“ 
Automatica 67 (2016): 144-156.

A-priori worst-case upper-bound ෥𝝆 based on all the 
admissible solutions of each agent.

Vujanic et Al.



Decentralized resolution schemes

Vujanic Robin, et al. "A decomposition method for large scale MILPs, with performance guarantees and a power system application.“ 
Automatica 67 (2016): 144-156.

A-priori worst-case upper-bound ෥𝝆 based on all the 
admissible solutions of each agent.

Vujanic et Al.

depending on all admissible solutions



Non-decreasing adaptive tightening 𝝆𝑘  based only on the 
tentative solutions explored by the resolution scheme.

Decentralized resolution schemes

Falsone Alessandro et Al., "A decentralized approach to multi-agent MILPs: finite-time feasibility and performance guarantees."
Automatica 103 (2019): 141-150.

Falsone et Al.



Non-decreasing adaptive tightening 𝝆𝑘  based only on the 
tentative solutions explored by the resolution scheme.

Decentralized resolution schemes

Falsone Alessandro et al., "A decentralized approach to multi-agent MILPs: finite-time feasibility and performance guarantees."
Automatica 103 (2019): 141-150.

Falsone et Al.

depending on explored solutions



Decentralized resolution schemes – Memoryless update

Vujanic et Al.

Falsone et Al.

Adaptive bound based on all 
explored solutions

A priori bound based on all
feasible solutions

Both conservative, may be inapplicable or lead to
poor performance (worsens as 𝜌 ∞ increases)



Adaptive tightening 𝝆𝑘  derived based on the current
tentative solution obtained by the resolution scheme.

Decentralized resolution schemes – Memoryless update

Memory-less update

Manieri Lucrezia et Al., "A novel decentralized approach to large-scale multi-agent MILPs.“ IFAC-PapersOnLine 56 (2023): 5919-5924.



Decentralized resolution schemes – Memoryless update

Memory-less update

Vujanic et Al.

Falsone et Al.
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Adaptive bound based on all 
explored solutions

Adaptive bound based on 
current solution only

A priori bound based on all
feasible solutions



Decentralized resolution schemes – Memoryless update

No convergence 
guarantees

Memory-less update

Manieri Lucrezia et Al., "A novel decentralized approach to large-scale multi-agent MILPs.“ IFAC-PapersOnLine 56 (2023): 5919-5924.

Less conservative



Manieri Lucrezia et Al., "Handling complexity in large-scale cyber-physical systems through distributed computation" chapter in
Computation-Aware Algorithmic Design for Cyber-Physical Systems, Springer (2022)

Decentralized resolution schemes – Memoryless update

Memory-less update

Integral update

No convergence 
guarantees

Less conservative



Decentralized resolution schemes – Integral update
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Decentralized resolution schemes – Integral update



Decentralized resolution schemes – Integral update

As long as 𝒙 𝝀𝝆
⋆ is unfeasible, 𝑣𝜌 ≥ 0 and 𝜌 increases



Decentralized resolution schemes – Integral update

As long as 𝒙 𝝀𝝆
⋆ is unfeasible, 𝑣𝜌 ≥ 0 and 𝜌 increases

𝒟𝜌 enforces coupling constraints→ 𝑣𝜌 is small



Decentralized resolution schemes – Integral update

As long as 𝒙 𝝀𝝆
⋆ is unfeasible, 𝑣𝜌 ≥ 0 and 𝜌 increases

෤𝜌

0

Saturation of 𝜌 to ෥𝝆

𝒟𝜌 enforces coupling constraints→ 𝑣𝜌 is small



Manieri Lucrezia et Al., "Handling complexity in large-scale cyber-physical systems through distributed computation" chapter in
Computation-Aware Algorithmic Design for Cyber-Physical Systems, Springer (2022)

Decentralized resolution schemes – Memoryless update

Less conservative

No convergence 
guarantees

Memory-less update

Manieri Lucrezia et Al., "A novel decentralized approach to large-scale multi-agent MILPs.“ IFAC-PapersOnLine 56 (2023): 5919-5924.

Integral update

Guaranteed convergence 
to a feasible solution

Less conservative



One coupling 
Constraint

Decentralized resolution schemes – Scalar coupling

No tightening needed

Dual Bisection Algorithm 

Finite-time convergence 
to a feasible solution

Manieri Lucrezia et Al., " Dualbi: A dual bisection algorithm for non-convex problems with a scalar complicating constraint "
Submitted to Automatica for possible publication and available on arXiv

Bisection-based



Decentralized resolution schemes – Scalar coupling

No tightening needed

Dual Bisection Algorithm

Manieri Lucrezia et Al., " Dualbi: A dual bisection algorithm for non-convex problems with a scalar complicating constraint "
Submitted to Automatica for possible publication and available on arXiv

Bisection-based

Non-convex
cost function

“Simple” 
constraints

Single complicating 
constraint

Finite-time convergence 
to a feasible solution



Solving non-convex problems with a complicating constraint

The dual function is scalar and concave



Solving non-convex problems with a complicating constraint

Dual problem solved via a bisection method to find a zero 
of the sub-differential



Solving non-convex problems with a complicating constraint

𝑣 𝑥 ҧ𝜆



Solving non-convex problems with a complicating constraint

feasible

𝑣 𝑥 ҧ𝜆 < 0

𝑣 𝑥 ҧ𝜆 > 0



Application to the 
provision of balancing 

services to the power grid



Balancing services provision via prosumers aggregation

92

Prosumer

▪ Controllable generator G : 𝑃𝑖
𝐺 > 0 

▪ Programmable load L : 𝑃𝑖
𝐿 < 0

Assumed to work on   𝑛𝑖
𝐿 levels  

▪ Battery Storage Device B : 𝑃𝑖
𝐵 ≶ 0

▪ Reference daily profile   ෨𝑃𝑖

Pool

▪ 𝑚 prosumers

▪ Power exchanged with the grid 𝑃 = σ𝑖=1
𝑚 𝑃𝑖

𝐺 + 𝑃𝑖
𝐵 + 𝑃𝑖

𝐿

BSP

One-day time horizon → 𝑀 slots of duration 𝜏𝑠

▪ 𝑡𝜏𝑠, 𝑡 + 1 𝜏𝑠 , 𝑡 ∈ 0, … , 𝑀 − 1  



Balancing services provision via prosumers aggregation
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TSO

Variation of the power profile:  Γ 𝑡 1 ± 𝜀  𝜀 ∈ 0,1

In the time-interval    𝑡0, … , 𝑡𝑓

BSP

Γ 𝑡 1 − 𝜀 ≤ 𝑃 𝑡 − ෨𝑃 𝑡 ≤  Γ 𝑡 1 + 𝜀  ∀𝑡 ∈ [𝑡0, 𝑡𝑓]

𝑃𝑖 𝑡 = ෩𝑃𝑖 ∀𝑡 ∈ [𝑡𝑓 + 1, 𝑀 − 1]

Re-distributes the request among all prosumers

Satisfy operating 
constraints

Minimise 
Operational Costs
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Variables (of the 𝑖𝑡ℎ prosumer)

MLD model

𝑃𝑖
𝐺 > 0 

𝛿𝑖
𝐺 ∈ {0,1}

𝑃𝑖
𝐵 ≶ 0

𝑆𝑖 𝑡

𝑃𝑖
𝐿 ∈  0,

ത𝑃𝑖
𝐿

𝑛𝑖
𝐿 , 2

ത𝑃𝑖
𝐿

𝑛𝑖
𝐿 … ത𝑃𝑖

𝐿

𝛿𝑖
𝐿 𝑡 =

𝛿𝑖,1
𝐿

⋮
𝛿

𝑖,𝐽𝑖
𝐿

𝐿

𝑛𝑖
𝐿 = 2𝐽𝑖

𝐿
− 1 , 𝐽𝑖

𝐿 ∈ ℕ

𝑃𝑖
𝐿 = ෍

𝑗=1

𝐽𝑖
𝐿

2𝑖
𝑗−1 ത𝑃𝑖

𝐿 ⋅ 𝛿𝑖,𝑗
𝐿 𝑡 = 𝜎⊤ ⋅ 𝛿𝑖

𝐿(𝑡)

Assumption:

𝛿𝑖,𝑗
𝐿 (𝑡) ∈ 0,1     𝑗 = 1, … , 𝐽𝑖

𝐿
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Variables (of the 𝑖𝑡ℎ prosumer)

MLD model

𝑃𝑖
𝐺 > 0 

𝛿𝑖
𝐺 ∈ {0,1}

𝑃𝑖
𝐵 ≶ 0

𝑆𝑖 𝑡

𝛿𝑖
𝐿(𝑡) ∈ 0,1 𝐽𝑖

𝐿

Input Vector

State Vector
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Operating Constraints (of the 𝑖𝑡ℎ prosumer)

MLD model

Battery Storage Dynamics

Energy Consumed by L

Min/Max Capacity Level

Charging/Discharging rates

Min/Max Power Produced by G



Balancing services provision via prosumers aggregation

97

Rescheduling Problem Constraints

MLD model

Flexibility Limitation of L

Power Variation (TSO request)

Rebound Effect Avoidance



Balancing services provision via prosumers aggregation
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Operational Costs

MILP formulation

𝐶𝑖
𝐺 > 0 : Unitary cost of the energy produced by G

𝐶𝑖
𝐵 > 0 : Unitary cost of the aging of battery B

𝐶𝑖
𝐿 > 0 : Unitary cost for changes in the

programmable load consumption profile



Balancing services provision via prosumers aggregation

99

Operational Costs

MILP formulation

NON-LINEAR

Re-formulation

auxiliary variables subject to:

NON-LINEAR

LINEAR
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Re- Formulation

MILP formulation

subject to:with



Balancing services provision via prosumers aggregation
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Decision Variables

MILP formulation

Cost Function
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Decision Variables

MILP formulation

Cost Function



Provision of ancillary services to the power distribution grid

Mixed Integer 
Linear Program



Provision of ancillary services to the power distribution grid

Mixed Integer 
Linear Program



Provision of ancillary services to the power distribution grid

Multi-agent constraint 
coupled MILP 50 

prosumers



Provision of ancillary services to the power distribution grid

Multi-agent constraint 
coupled MILP

8 
fictitious 
agents



Provision of ancillary services to the power distribution grid

Multi-agent constraint 
coupled MILP

16 
coupling

constraints



Provision of ancillary services to the power distribution grid

Comparison with 50 prosumers over 100 different parameters sets

Optimality 
gap

Quality measured 
based on a bound on 
the distance from the 

optimal cost



Provision of ancillary services to the power distribution grid

Both integral and 
memory-less resolution 

schemes achieve an 
average gap of 0.17%

State of the art 
approaches could not

compute a feasible
solution

Comparison with 50 prosumers over 100 different parameters sets



Provision of ancillary services to the power distribution grid

Both algorithms return  close-
to-optimal solutions as the size

of the problem increases.

Using ad-hoc procedures allows 
to recover computational 

tractability



Dealing with 
uncertainty



Dealing with uncertainty

Uncertain multi-agent problem



Dealing with uncertainty

Uncertain multi-agent problem
Uncertain 

parameter



Dealing with uncertainty

Uncertain multi-agent problem
Nominal value

Replacing 𝛿 with some nominal value ҧ𝛿 may lead to infeasibility



Dealing with uncertainty

Robust multi-agent problem

Enforce constraints for all admissible values of 𝛿 ∈ Δ leads to 
overly conservative approaches (and requires knowledge of Δ)

All admissible 
values



Dealing with uncertainty

Data-driven multi-agent problem

Data-based formulation using realizations of the uncertain 
parameter to characterize Δ and underlying ℙ.

Collected 
realizations



Dealing with uncertainty

Data-driven multi-agent problem
Collected 

realizations

How many data are needed for the solution to satisfy the 
constraints associated with not yet seen scenarios?



Dealing with uncertainty

[1] provides guarantees 
for an optimal solution

Existing a-priori probabilistic guarantees

Finding an optimal
solution is often unviable

Guarantees in [2] require 
a shared data-set

Agents may not be willing 
to share sensitive info

[1] Esfahani Peyman M. et al. “Performance bounds for the scenario approach and an extension to a class of non-convex programs.“ 
IEEE Transactions on Automatic Control 60 (2014) 46–58.

[2] Falsone Alessandro et al. “Uncertain multi-agent MILPs: A data-driven decentralized solution with probabilistic feasibility guarantees.“ 
Proceedings of machine learning research (2020) 1000–1009.



Dealing with uncertainty

Data-based guarantees

With confidence 1 − 𝛽 ,

a data-driven feasible solution is infeasible for some 

for each agent 𝑖 = 1, … , 𝑚 

Manieri Lucrezia et Al., " Probabilistic feasibility in data-driven multi-agent non-convex optimization " 
Annual Reviews in Control 56 (2023)

if



Dealing with uncertainty

number of linear inequality constraints of agent i 
involving continuous variables and affected by δ

number of combinations for the 
discrete variables of agent i.



Dealing with uncertainty

The smaller 𝜀, the more samples ഥ𝑁𝑖 are needed

Data-based guarantees

With confidence 1 − 𝛽 ,

a data-driven feasible solution is infeasible for some 

for each agent 𝑖 = 1, … , 𝑚 

if



Dealing with uncertainty

The smaller 𝜀, the more samples ഥ𝑁𝑖 are needed

Confidence can be close to 1 since ഥ𝑁𝑖 grows with the logarithm of 𝛽

Data-based guarantees

With confidence 1 − 𝛽 ,

a data-driven feasible solution is infeasible for some 
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if



Data-based guarantees

With confidence 1 − 𝛽 ,

a data-driven feasible solution is infeasible for some 

for each agent 𝑖 = 1, … , 𝑚 

if

Dealing with uncertainty

The smaller 𝜀, the more samples ഥ𝑁𝑖 are needed

Confidence can be close to 1 since ഥ𝑁𝑖 grows with the logarithm of 𝛽

The bound grows with the complexity 𝑘𝑖 of the local feasibility set



Dealing with uncertainty

[1] provides guarantees 
for an optimal solution

Existing a-priori guarantees

Guarantees hold for sub-
optimal solutions

Proposed a-priori guarantees

Guarantees in [2] require 
a shared data-set

Guarantees are local and 
hold for private data-sets

[6] Esfahani Peyman M. et al. “Performance bounds for the scenario approach and an extension to a class of non-convex programs.“ 
IEEE Transactions on Automatic Control 60 (2014) 46–58.

[7] Falsone Alessandro et al. “Uncertain multi-agent MILPs: A data-driven decentralized solution with probabilistic feasibility guarantees.“ 
Proceedings of machine learning research (2020) 1000–1009.
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