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Situation Readiness and
Resilience in Sensor-Driven
Systems

Bridging Sensor Fusion and Automatic Control Perspectives



Concept Overview

* Situation Readiness: system’s
ability to rapidly perceive,
Interpret, and act on
environmental changes.

* Resilience: system’s ability to
maintain or restore function
after disturbances.

e Combined: readiness ensures
fast awareness, resilience
ensures stable recovery.
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SEDDIT Framing T

System model: x = f(x, u, w) —> Sgrf;';a;l?;é N : Controller
* X: state vector (e.g., position, velocity) | T
: Y
* u:control input | | |
* w: external disturbance L | F=fouww]
Goal:

e Sensor fusion estimates both x and w from noisy data.

e Control uses these estimates to mitigate the effect of disturbances
and stabilize behavior.



Used in many areas

* Psychology / Behavioral Science

* Readiness = The cognitive, emotional, and physiological preparedness a person has for stressful or
uncertain events.

* Resilience = coping skills, recovery, stress-adaptation, and mental flexibility.

Organizational Behavior / Management
* Readiness = How prepared an organization is for change, crises, or transformation
* Resilience =how willing and capable employees are to adopt changes

Emergency Management / Disaster Science
* Readiness = preparedness for natural disasters, pandemics, attacks
* Resilience =the ability of a community or infrastructure to withstand and recover

Cybersecurity
* Readiness = systems designed so they can operate under expected and unexpected loads
* Resilience = ability to maintain critical functions under attack, failure, or overload

Military & Defense Studies
* Readiness = operational preparedness of forces, equipment, logistics
* Resilience = ability to recover from attacks, maintain command & control, and fight through
disruption
Education / Youth Development
* Readiness = preparedness to navigate life transitions (school readiness, college readiness)
* Resilience = ability to handle adversity, setbacks, or unstable environments



Example: GNSS-free navigation &0

Sensor Fusion for Situation Readiness 7/ @ @ WWW
. Multi-sensor.data fusion builds a MU Vision  Magnetometer Quantum
coherent estimate of the system state nertial
. ensor

and environment. \ vlv l J/

* Combines heterogeneous inputs (IMU,
vision, field sensors, quantum data).

Kalman Filter
* Enhances readiness by providing timely, / Fusion Engine
accurate situational awareness. Prediction + Correction

* Example algorithms: Kalman filtering,
particle filters, neural estimators.

Estimated State

Related to: COLLABORATIVE LOCALIZATION IN GNSS DENIED ENVIRONMENTS and
ESTIMATION AND INFORMATION HANDLING IN AHETEROGENOUS SOS and

ROBUST LARGE-SCALE ESTIMATION and
COLLABORATIVE EXPLORATIVE AGENTS IN UNKNOWN ENVIRONMENTS




Visionary Example: Quantum-Sensor-Based
Autonomous Vehicle

Demonstrate readiness (accurate estimation) and resilience (adaptive
control) under denial conditions.

* Goal: operate independently of GNSS or external infrastructure.

* Quantum-enhanced sensors (e.g., atom interferometers, NV
magnetometers) provide precise inertial and magnetic data.

* Sensor fusion layer integrates quantum and classical sensors to
estimate X, w without GPS.

* Control layer adapts to disturbances (wind, road grade, magnetic
anomalies) and maintains stable trajectory.



Example: real-time road monitoring SE}
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Din bil ska ge Trafikverket info
om var detir halt

Publicerad i gar 13:59

Trafikverket kommer att kopa fordonsdata for sju miljoner kronor
av flera fordonstillverkare for att forbattra vintervaghallningen.
Foto: Adam Ihse/TT

Trafikverkets generaldirektér Roberto Maiorana och infrastrukturminister Andreas
Carlson (KD). Trafikverket ska i ett unikt projekt kopa data fran
flera olika fordonstillverkare. Datan visar om det dr

halt eller inte — nch den cka anviindac far att farhiittrg

Fran 3000 till 300 miljoner matningar av vintervaglaget

Tekniken har hog tackningsgrad pa de hogtrafikerade vagarna och dven det mindre vagnatet far ofta
nagra matningar per dygn. Historiskt har ca 3 000 méatningar av vaglaget registreras per sdsong men
med denna teknik utokas det till over 300 miljoner matningar under en vinter.

Related to: OPTIMIZING VEHICLE DATA TRANSMISSION FOR ACCURATE REGIONAL TEMPERATURE MAPPING



Example: detection of pandemics SEp
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Infrastructure-free autonomous vehicle % %
enabled by sensor fusion. 4

&
* Readiness = estimation quality and ?3&

timeliness.

* Resilience = recovery and adaptation

Magnetomter

Vis. Cam.

through feedback. (Vis.Cam)

* Sensor fusion and automatic control ]
form a unified loop of situational IOua"!wm Fusion Engine
. . Inertial /Controller
intelligence.

Sensor
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Data-Driven Modeling and Diagnostics

1@3 Daniel Jung Fault diagnosis for complex systems combining models and

A
P Associate professor d | hods. fault isolati dd dri

o Vehicular systems ata, structural methods, rault isolation, an ata-driven
| -

‘ Linkdping University prognostics.

foo ) Martin Enqvist System identification (data-driven modeling) with
Associate professor applications to aircraft, UAVs, marine vessels, electronic
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Fault Diagnosis and Prognostics

* Fault Diagnosis and Prognostics are central for design of resilient
systems

» Detecting abnormal system behavior and identify its cause

* Provide information for e.g. decision-making and fault tolerant control

> Select more effective counter-measures when the fault is identified

Fault detection
and isolation

Fault estimation
and
reconstruction

Fault mitigation
and fault
tolerant control

Reconfiguration

Prognostics

Predictive
maintenance




Functional Safety

* Ensure that a system operates
correctly and reliably
* Maintain operability during

faulty states

Zhang, J., Rizzoni, G., Cordoba-Arenas, A., Amodio, A., & Aksun-Guvenc, B. (2017). Model-based diagnosis and fault tolerant control for
ensuring torque functional safety of pedal-by-wire systems. Control Engineering Practice, 61, 255-269.




Redundancy

* Hardware Redundancy X

Hardware redundancy

| System 1 ‘ yiell)

u(t) I_-’_'\.. it}
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» Triple-redundancy (e.g. aircraft)

Analytical redundancy

»n-1 criterion (e.g. power grid)
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* Analytical Redundancy

> Virtual sensors

* Reconfigurability and Safe Modes = |

»”Limp-home” mode

Idermark, M. & Erlandsson, V. (2024) Vibration Health Monitoring Using a Flight-State Aware Autoencoder on a Helicopter Main Rotor
Masters thesis, LiTH-ISY-EX--24/5702—SE, LinkOpings universitet

Andersson, M. (2013) Fault Diagnosis of a Fixed Wing UAV Using Hardware and Analytical Redundancy.
Masters thesis, LiTH-ISY-EX--13/4661--SE, Linkopings universitet.

Jung, D., & Ahmed, Q. (2018). Active fault management in autonomous systems using sensitivity analysis.
IFAC-PapersOnLine, 51(24), 1099-1104.



Decision Support

* Mission Planning

'\“ '/@

» Can the system fulfill its mission? | Ve 52
Q=f
»Monitoring system degradation and
. . . « e B A Critical Failure Level
Remaining Useful Life (e.g., Digital Twins¥) E P
»Schedule maintenance when needed ) R
% : Remaining Useful Life /’,
—“"/’ EOLE

*Glaessgen, E., & Stargel, D. (2012, April). The digital twin paradigm for future NASA and US Air Force vehicles.
In 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures
conference 14th AIAA (p. 1818).



Data-Driven Modeling for Fault Diagnosis

* Quality of training data
» How to handle scenarios not

represented In tralnlng data? Uncertianties quantified by ensemble model
- el e , Threshold
@ AN s ez ol
* When can we trust the model? § o=t L el g Residualy
o . . . & Fault | B "N _
» Distinguish between model inaccuracies = b W ot N e S
and changes in system behavior e
. I 100 2100 Jod g Sl i) rlitl g0
»"”When is a detected anomaly caused by Time
a fault?”

* Human-in-the-loop

Mohammadi, A., Krysander, M., & Jung, D. (2025). Consistency-based diagnosis using data-driven residuals and limited training data.
Control Engineering Practice.

Jung, D., & Westny, T. (2026). Uncertainty-aware fault diagnosis of unknown faults using ensemble-based NODE residuals.
Mechanical Systems and Signal Processing.



Data-Driven Modeling for Adaptivity

* Online/Sequential/Recursive data-driven modeling 2

enables adaptivity, which relates both to situation = D OO0
readiness and resilience E Y
e Accurate and up-to-date models are useful for: 2 : -

e Controller tuning, model predictive control, updated
safety limits, etc. (cf. indirect adaptive control)

* Localization

* Predicting future behaviors, path planning
* Diagnosis (both automatic and manual)

* Methods need to be robust against varying
environmental disturbances




Example: Aircraft Monitoring

Sequential estimation of aircraft

properties

* Gives up-to-date information about
physical parameters for manual or
automatic analysis

 Developed for flight test conditions

but can be used during normal .
operation ‘E oF & ForE-o-0-0-0-0-0
. . . . . 0
* Situation readiness, mainly with
. . -2 - -
respect to internal changes, with 0 5 10

humans in the loop




Example: Unmanned Aerial Vehicles (UAVs)

Robust closed-loop fault detection of UAVs ™ ey

 Combination of additive faults (e.g., in
sensors), additive disturbances (e.g.,
wind) and nonadditive faults (e.g., mass
changes)

 C(Closed-loop operations provides
additional challenges

e Sijtuation readiness for both internal
and external faults of different nature




Example: Marine Automation

Estimation of cargo-dependent L o,

parameters of ships .

* Maintaining safe operations =
(control, predictions, planning)
despite varying load conditions

* Detecting abnormal behaviors (free-
surface effects from water on deck,
etc.)

e Situation readiness and resilience

Image courtesy of ABB
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Learning methods for control

Svante Gunnarsson
Professor
Sensorinformatik
Linkdping university

Farnaz Adib

Assistant professor
Automatic control
Linképing university

Ayca Ozcelikkale
Associate professor
Electrical Engineering
Uppsala university

Modeling, identification, control, and diagnosis of
industrial robots.

Learning methods for control, Reinforcement Learning
(RL), generative methods for control, Behaviorak.

Machine learning, neuromorphic computing, statistical
signal processing, communications and optimization.



Uncertainty & Speed

We need a

Grandmaster




Situation readiness

and resilience

Perception OX
Comprehension @
Projection ("?@
Decision

Pillar
focus




Managing Trust, Uncertainty, and Explainability

Accuracy
Generalization
Physical consistency
Formal verification

\m P Explainability:

'. Uncertainty: N Feature attribution
. *  Model confidence Sensitivity analysis
« Datanoise Physics-informed

Non-Markovian L JJ| explanations




Resilience-Beyond adaptivity

* Not surviving a known failure
mode;

but

* generalized capacity to cope
with unexpected disruptions.




Resilience gap- old school fails

Simplified models

We

SUWIJJSAS Jedur]

Out Of Distribution (OOD) Lacks generalizability




Resilience: Response and recover

rExploration vs Guidance h
Reward
Estimate
Guidance
Signal

Policy
L Update

Multi-Agent RL Behavioral Cloning Guided search
 Life-long learning « Rapid expert recovery « Combination of RL
« Rooted in experience and BC

 Decentralized




Impact

Fleet of cars Power grids

» Safe coordination, « predict transient stability

« mitigating the risk of human « preventing blackouts
takeovers « enabling reliable

» Massive economic benefits of emergency control.

efficiency and safety




Call for competences

Learning methods for control

Sensor fusion

and sensor
systems . .
Situation
readiness
and
Data-driven ot o
modeling resilience
and
diagnostics

Optimization and planning
for control and autonomy

Control-
oriented
physics-
based
modeling
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Control-oriented physics-based modeling

Lars Eriksson
Professor
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Modeling, identification, control, and optimiztion of
vehicle propulsion systems.
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Control Oriented Physics-Based Modeling 20

What is a Model?

* A model is a predictor!
* Predict the result of future experiments.

* Example:
* Dropping a ball.
2 2s

ov:gt’ Szgt?’ t = ?

e A2 mdroptakest = 2 ~06s
\/ 9.81

* High heights & velocities, air-drag plays a rol§
_All Models are Wrong!
_But, Some are Useful!

* Simplification, useful for low heights.

: e e .P. Box
* All models are simplifications. ©

* Physics helps us extrapolate sanely, force balance with Newton’s law. >



Relying on Physics in Engineering

* Resilience is not only about preventing
failure—it is about maintaining function
despite failures.

* Even if things go wrong the laws of
physics still hold.

* Physics-based and model-based
strategies are powerful because they f
give insight into what the system cando, =
should do, and will do, even in adverse
conditions.

* Handling rare events can give a need for
extrapolation.




Interplay Between Diagnosis and Control

Observers can detect: Once a fault is detected, model-based

e actuator faults, control can help:

e sensor drifts, * reconfigure control loops,

- structural damage * redistribute loads,

. o
e thermal anomalies, gracefully degrade performance,

. . [ ]
e unwanted oscillations. enter safe modes.

_Use all methods and tools available.

resilience.
SEDDIT competences contribute to performance and



Benefits from support in extrapolation

Real systems can’t always be tested under:

o8¢ 1R g

S

* extreme loads,
e component failures,
* multi-fault conditions, or

e cascading disturbances.

Physical models can simulate dangerous
scenarios safely and cheaply.

Example: Coolant system ageing & clogging,
battery temperature rise, electric machine
overheating, critical down-hill driving.




Resilience when Physics-Based and Model-Based
Approaches Work Together

Resilience is strongest when:
« physics-based models provide insight, fidelity, and predictive capability,
* model-based control exploits that insight to optimize behavior in real time.

This integrated approach makes it possible to:
 anticipate failure,

« operate near physical limits safely,

« adapt to degradation,

» recover from faults.

Example applications:

« Automotive: Energy management + thermal + torque-vectoring controllers use battery/motor/tire models
to stay within safe regions.

» Wind turbines: Models of aerodynamics and loads enable fault-tolerant pitch/torque control.

 Power grids: Physics-based power-flow models combined with MPC support fault ride-through and
black-start strategies.



Physics-based and model-based control design towards
resilience in systems engineering by enabling

a) Prediction
* Understanding how disturbances and failures propagate through the physical system.

b) Prevention
* Acting ahead of time to avoid unsafe states.

c) Adaptation
* Reoptimizing or reconfiguring control actions as the system degrades.

d) Robust Response
* Maintaining stability and performance under faults and uncertainties.

e) Recovery
* Using models to guide safe restoration of normal operation.
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Optimization & planning for control and autonomy

g Daniel Axehill Fast optimization algorithms, real-time certification,
o Zrotfess‘if - MPC, optimal motion planning, high-performance
/ utomatic contro g . q
‘\\//. - computing, applications,...

£ Johan Léfberg
gl Associate Professor Optimization modelling and software,

Automatic Control C ..
Ui st Unfivarsiin robust optimization, control theory,...

Christos Verginis
Assistant Professor
Signals & Systems

Coordination of multi-agent
autonomous systems, entailing

Uppsala University learning, planning, and control.
Erik Frisk Planning and control under uncertainty, interacting
Professor multi-agent autonomous systems, learning systems,

Vehicular systems

Linkping University large-scale optimization in planning




Control & feedback = Resilience

The End. Questions?



Level 2: Resilient control — Resilient resiliancy?

Robustness, Adaptivity, Recoverability



Planning




e

=
P

et



Feedback control




MPC = update plan - feedback



Incorporate knowledge about unkowns









Don’t fear the unknown, fear the unknown unknown

b.
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