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This presentation reflects a signal processing perspective of quantum sensors, and quantum
magnetometers in particular. For details on the sensor construction, and underlying physical principles,
please, ask a physicist. :)
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Quantum Sensors

Definition

A quantum sensor is a sensor that uses quantum mechanical
phenomena to measure physical quantities with precision beyond
classical sensors.

Quantum sensors leverage fundamental physics to achieve sensitivities
unattainable by classical devices.
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Quantum Sensors: phenomena
Quantum Mechanical Phenomena
® Superposition: Particles exist in multiple states simultaneously
= higher sensitivity.
® Fntanglement: Linked particles improve measurement accuracy.
® (Coherence: Maintains quantum states long enough for reliable data.

Superposition Entanglement Coherence
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Particles exist in multiple states simultaneously Linked particles share quantum states Quantum state maintained over time
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Quantum Sensors: examples

Atomic clocks:
Ultra-precise timekeeping (GPS, telecom).

Magnetometers:

G. Hendeby

Detect weak magnetic fields (medical imaging, geology, navigation).

Gravimeters:

Measure gravity variations (resource exploration).

Interferometers:

Used in navigation and gravitational wave detection.

Imaging sensors:

Quantum-enhanced cameras for low-light imaging.

Chemical sensors:
Detect trace molecules with high sensitivity.

Thermometers:
Measure temperature at the quantum limits.

Linkoping, November 19, 2025 4/12

4 Chemical sensors

3 Thermometers
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Magnetometers: motivation

Magnetic field measurements can be used for, e.g., localization and odometry.

Localization

Odometry (from a sensor array)

Magnetic field strength

Array measurements
{yY 1Y, sampled at
time instant ¢;.

Folatio magniude )

Displacement: z Position
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Magnetometers: sensor technologies (miniature sensors)

M Quantum M Conventional
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Experiment Equipment

Sensitity [nT/Hz)
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a1

Type: Optically pumped (OPM) A J’HAMWQMM
Field Sensitivity: < 1pT/+v/Hz in 0.1-100 Hz band sy
Dynamic Range: 1000-100000nT Noise spectrum
POWeI’: 5V to 19 V, 2W total ‘B\asver‘susyaw‘ ‘ —
Dimensions: 19 x 19 x 47 mm (sensor) ol e
=
Weight: 18g (sensor) £ /~"
Max data rate: 400 Hz | N e
Axis of sensitivity Magnitude only e v el
Cost: $10000 vaw [degrees]
/ Bias vs Yaw
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Granso Field Trial
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Granso Field Trial: results

Gradient magnitude versus space

Magnetic field variations versus space
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Granso Field Trial: background level

Field change versus time

12 T T

local sensor
reference sensor | ]

10

® Background magnetic field measured

g with dedicated sensor.
(0] . .
g ® Temporal variations of almost the same
S order of magnitude as the spatial.
i=]
3 .
T ® Reference measurements available from
Uppsala.
Start magnitude local sensor 51555 [nT] .
2f 1 ® (Clear correlations to reference sensor.
Start magnitude reference sensor 51853 [nT]
4 : : ‘ : ‘ ‘ ‘ ‘
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Granso Field Trial: reflections

Sensor characteristics obtained.

Granso data indicates significant field variations, not measurable
with classic sensors.

Changes in background level are significant, cannot be ignored.

Sensor properties must be handled, e.g., direction dependent
measurements.

Usefulness without knowing the background level is limited.
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Concluding Remarks

e “Just” any sensor, from a signal processing perspective. . .
® but new challenges, e.g.:

m sensor noise often not dominating error source,
m modeling errors (new phenomena significant),
m numerics becomes noticeable,

m platform interference is significant.

® Potential for impressive accuracy and resolution.

® |nteresting prospects, but not a “golden” solution.
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