# Friction Mapping for Clamp Force Estimation

Nils Dressler, Emil Wallbom, Lars Eriksson

#### Abstract

Friction variability drives torque  $\rightarrow$  force scatter in threaded joints, limiting clamp-force accuracy. We map thread and underhead friction across **load** and **speed** to

(i) provide priors/initial guesses for clamp-force estimators(ii) quantify spread as an uncertainty indicator.

The map shows that friction and its variability are not constant: certain load—speed regions are stable, others exhibit large spread.

# Motivation & Objective

Clamp force is highly sensitive to friction in both threads and at the bearing surface; variability in the coefficient of friction (COF) is a primary source of torque $\rightarrow$ force scatter (reports up to  $\pm 40\%$  when inferring F from torque alone). Standards (ISO 16047; VDI 2230) specify how to determine friction at prescribed proof load and speed, but they do not provide load–speed–resolved priors or quantify spread for a specific joint.

**Objective:** Quantify how COF changes with load and speed for a specific **joint** (bolt–nut–washer + joint members), delivering an operating-point COF and its uncertainty to improve estimator convergence and enable optimization of tightening profiles.

Operating-point prior. At the current load F and speed v, we model COF as approximately Gaussian,

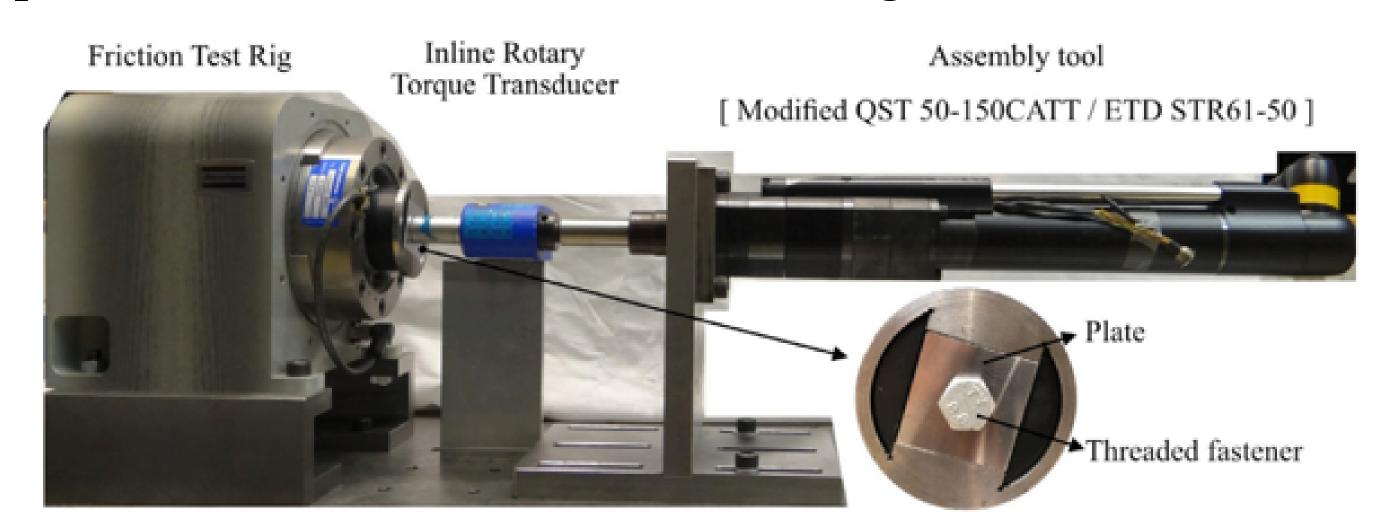
$$\mu(F, v) \sim \mathcal{N}(\mu_0(F, v), \sigma^2(F, v)),$$

where  $\mu_0(F, v)$  is the map value (median) and  $\sigma(F, v)$  as the standard deviation of the samples.

#### How we use it

- Use the friction map to set the estimator's starting value (median COF) and confidence ( $\sigma$ ) at the current (F, v).
- Predict how COF changes with speed under load to plan/optimise tightening trajectories towards the target clamp force under quantified uncertainty.

#### Methods


At discrete speed setpoints  $v_s$ , a fixed number of tightenings were recorded from near-zero load to  $F_{\rm max}$  on a friction test rig (FTR) with an inline rotary torque transducer.

Signals: total torque T(t); thread torque  $T_{th}(t)$ ; angular position  $\theta(t)$ ; clamp force F(t).

## Resampling, map construction & smoothing

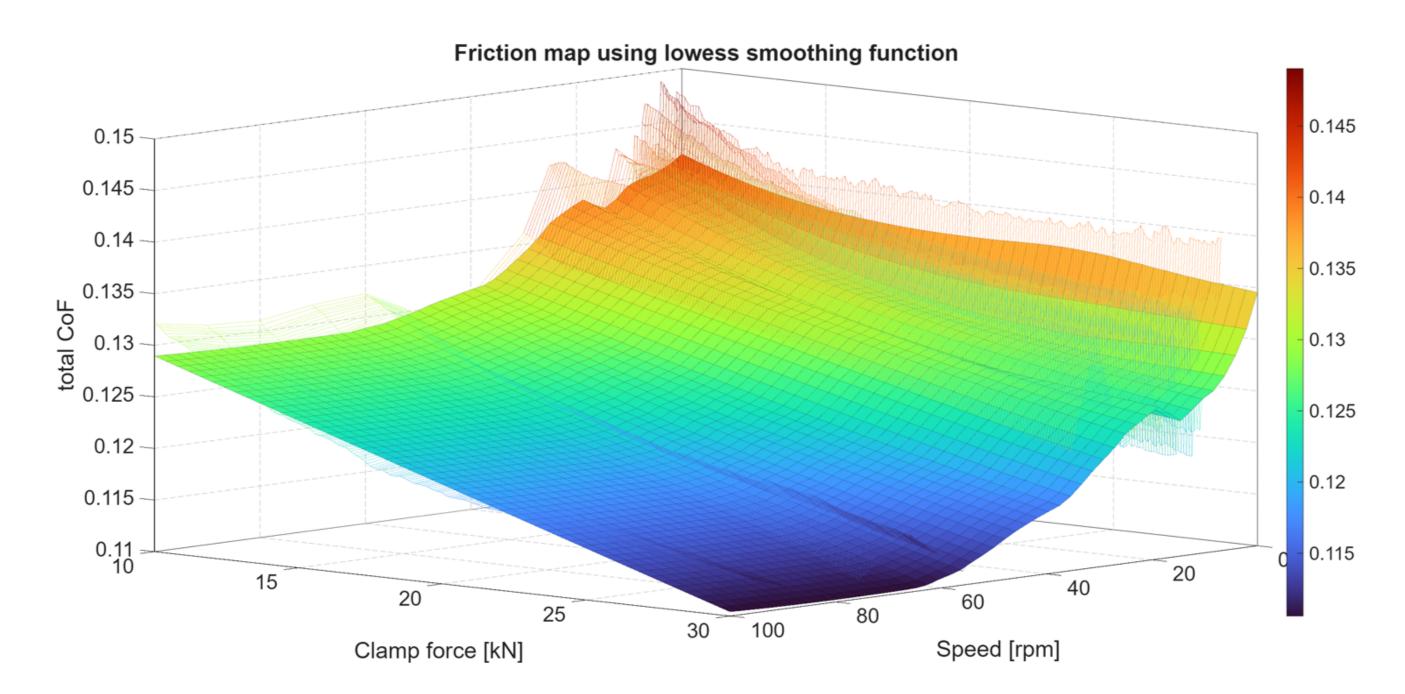
We define a common load grid  $\{F_k\}$ . For each run and each  $F_k$ , we identify (or interpolate) the time where  $F(t) = F_k$ , read T and  $T_{\text{th}}$ , and compute  $\mu_{\text{thread}}(F_k, v_s)$  and  $\mu_{\text{bearing}}(F_k, v_s)$ . Aggregating across runs at each  $(v_s, F_k)$ , we report the *median*  $\tilde{\mu}$  and the across-run *standard deviation* (SD), which form the 3-D friction map.

To reduce non-physical oscillations between grid points, we are testing light 2-D smoothers on  $(F, v_s)$  to suppress ripple while preserving trends; the final choice is pending. Uncertainty uses per-cell SD with minimal or no smoothing.



Friction test rig with inline rotary torque transducer and electric assembly tool.

From Kumar, Persson, Sherrington & Glavatskih (2022), Tribology International 170:107498.


DOI: 10.1016/j.triboint.2022.107498.

### Results

We analyse only the steady regime of continuous tightening, windowed to  $F \in [10, 30]$  kN; early seating and the stop event are excluded. We then solve the torque—tension balance to estimate thread and under-head COF and build load—speed maps from per-cell *medians* and *SDs* across runs.







- **X** Material dependence: Stability and trend strength vary strongly with different materials; maps are joint-specific.
- **Speed effect:** COF is high at very low speed (stick−slip risk); above ~10 rpm COF decreases with speed.
- X Load effect: COF decreases with clamp force across speed ranges.
- XVariability: Within-cell scatter often exceeds differences between neighboring cells—hotspots.
- **X Stick−slip zone:** Below ~10 rpm non-physical ripples appear with current sample size; denser sampling and careful feature extraction (peaks/valleys/mean) are needed.

## Conclusions

- COF map gives operating-point value + uncertainty for the joint.
- Map-based init improves estimator convergence/confidence; useful for friction-model parametrisation.
- Robust maps need repeats per cell and clear stick—slip rules; ISO 16047/VDI 2230-aligned.

## Acknowledgements

This work was performed within the Competence Center SED-DIT (Sensor Informatics and Decision-making for the Digital Transformation), supported by Sweden's Innovation Agency Vinnova within the research and innovation program Advanced digitalization.



