Semidefinite Programming for Domain Randomization in LQR

Abbas Pasdar

Farnaz Adib Yaghmaie

abbas.pasdar@liu.se Division of Automatic Control, Linköping University

farnaz.adib.yaghmaie@liu.se
Division of Automatic Control, Linköping University

Abstract

Uncertainty in model parameters presents a major challenge in control and policy design. We introduce a **semidefinite programming (SDP) framework** for domain randomization (DR) in Linear Quadratic Regulation (LQR). Our method designs a single controller to optimize the average performance and stabilizes all sampled system instances.

Introduction and Motivation

- Conventional methods, such as Min-Max control, tend to be conservative.
- DR generalizes control performance by minimizing the expected objective function over parameter distribution.
- We propose an SDP framework [1] to address this problem in LQR, which facilitates constraint optimization.

Problem Formulation

We consider the linear uncertain system:

$$x_{k+1} = A(\theta)x_k + B(\theta)u_k + w_k, \quad u_k = Kx_k.$$

The DR-LQR objective:

$$J_{\mathrm{DR}}(K) = E_{\theta} \left[\mathrm{Tr} \left((Q + K^{\top} R K) \Sigma_{\theta} \right) \right]$$
s.t. $\Sigma_{\theta} = (A(\theta) + B(\theta) K) \Sigma_{\theta} (A(\theta) + B(\theta) K)^{\top} + I.$

Goal is to find K minimizing $J_{DR}(K)$ while ensuring stability for all samples. We estimate the expectation with M samples:

$$J_{\mathrm{DR}}(K) pprox J_{\mathrm{SA}}(K) = \frac{1}{M} \sum_{j=1}^{M} \mathrm{Tr}\left[(Q + K^{\top}RK)\Sigma_{j} \right]$$

where $\Sigma_j = (A_j + B_j K) \Sigma_j (A_j + B_j K)^\top + I$.

SDP Descent (SDPD): an iterative solution

Starting from an initial stabilizing K_0 , in any iteration i find the best perturbation direction δ_i which minimizes the first-order approximation of $J_{SA}(K_i + \delta_i)$. In particular, solve:

$$\begin{split} \delta_i^{\star} &= \arg\min_{\delta_i, \; \sigma_{j,i}} \quad \frac{1}{M} \sum_{j=1}^{M} \mathrm{Tr}[(Q + K_i^{\top} R K_i) \sigma_{j,i} + 2 K_i^{\top} R \delta_i \Sigma_{j,i}] \\ & \text{s.t.} \quad \sigma_{j,i} \succeq A_{j,i} \sigma_{j,i} A_{j,i}^{\top} + A_{j,i} \Sigma_{j,i} (B_j \delta_i)^{\top} + B_j \delta_i \Sigma_{j,i} A_{j,i}^{\top}, \\ & \forall j \in \{1, ..., M\}, \; \|\delta_i\| \leq \eta_i, \end{split}$$

and update by $K_{i+1} = K_i + \delta_i^*$ if $J_{SA}(K_i + \delta_i^*) \leq J_{SA}(K_i)$, otherwise, decrease the step size η_i and repeat.

Proposition 1 (Stability) A sufficient condition to remain stable for each sample j at iteration i is

$$\|\delta_i\| < \mu_{j,i} := \frac{\|A_{j,i}\|}{\|B_j\|} \left[\sqrt{1 + \frac{1}{\|A_{j,i}\|^2 \|\Sigma_{j,i}\|}} - 1 \right].$$
 (1)

Proposition 2 (Perturbation sensitivity) as $\|\delta_i\| \to 0$,

$$\|\Sigma_{j,i}(K_i+\delta_i)-\Sigma_{j,i}(K_i)\|=\mathcal{O}(\|\delta_i\|).$$

Jointly Stabilizing Initial Controller (JSIC)

A stabilizing feedback gain K_0 exists if and only if the optimum of the following problem is less than one; i.e. $\alpha < 1$

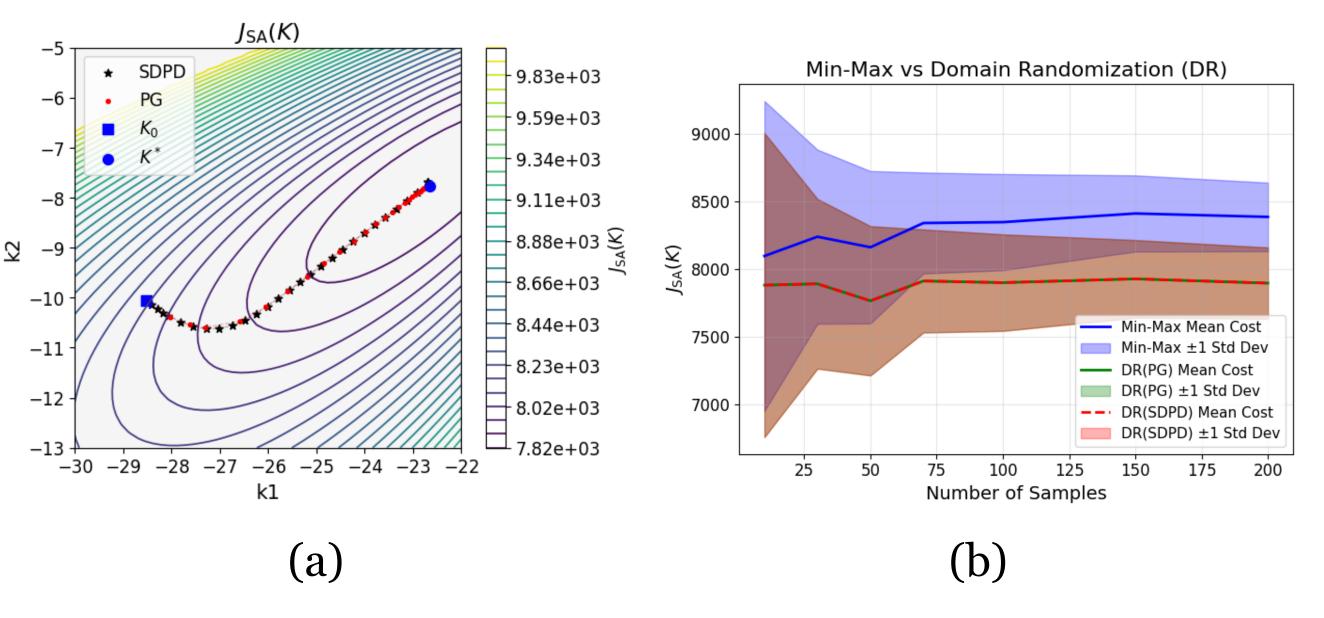
$$\min_{K_0, P_j, \alpha_j} \alpha$$
s.t. $(A_j + B_j K_0) P_j (A_j + B_j K_0)^\top \prec \alpha_j P_j,$

$$\alpha > \alpha_j, \quad P_j \succ 0, \quad \forall j \in \{1, ..., M\}.$$
(2)

This problem can be solved using a similar approach to SDPD.

Simulation Result

- Discretized and linearized inverted pendulum is used.
- Fig. (a) The trajectory of convergence for the SDPD and PG [2] algorithms. Fig. (b) DR approach vs Min-Max for H_2 controller.



Contribution to SEDDIT

DR in LQR yields optimal controllers that adapt well to real-world variability, managing energy consumption. In particular, our method:

- can handle variations in the parameters of the dynamics enabling optimal energy usage,
- reduces inefficiencies due to overdesign for worst-case scenarios by cutting unnecessary energy consumption.

Acknowledgements

This work was performed within the Competence Center SEDDIT (Sensor Informatics and Decision making for the DIgital Transformation), supported by VINNOVA (Sweden's Innovation Agency) within the research and innovation program Advanced digitalization.

Reference

- [1] A. Pasdar et al., "Semidefinite Programming for Domain Randomization in LQR", Submitted to European Control Conference (ECC) 2026.
- [2] T. Fujinami et al., "Policy Gradient for LQR with Domain Randomization", arXiv:2503.24371.

